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Semi-supervised learning for detection of sedges in sod farms 
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A B S T R A C T   

Deep learning-based methods for weed detection and precise herbicide application are promising for reducing 
herbicide input and weed control costs. However, training the neural network to recognize weeds requires 
annotating a large number of training images, which is time-consuming and labor-intensive. In addition, in turf 
sod farms, sods need to be periodically harvested, leading to varying turfgrass and bare soil areas, which increase 
the complexity of weed detection. To solve this problem, this research explored semi-supervised learning (SSL) 
methods to train image classification neural networks. The experiments were conducted to compare the training 
results using different SSL strategies with 100 and 200 labeled images at three image sizes of 240 × 240, 360 ×
360, or 480 × 480 pixels. The training dataset images mainly contained purple nutsedge (Cyperus rotundus L.) 
and green kyllinga (Kyllinga brevifolia) at the pre-flowering or seedhead stage. The F1 score, precision, and recall 
were used to evaluate the performance of the trained neural networks. The results showed that the network based 
on the FixMatch SSL strategy trained with the input images of 240 × 240 pixels exhibited the highest F1 score, 
reaching 98.1% when trained with 100 labeled images and 98.2% when trained with 200 labeled images. To 
summarize, these results suggest that SSL achieved a great training performance with a small number of an
notations. FixMatch SSL was the most effective neural network training strategy evaluated. For the weed 
detection task, it was observed that neural networks trained using an input image size of 240 × 240 pixels 
exhibited superior performance compared to the networks trained with other image sizes. In addition, employing 
the SSL method with only 200 labeled images enhanced the performance of the neural network, surpassing that 
of fully supervised learning (FSL) approaches.   

1. Introduction 

Turfgrass is a ubiquitous vegetation cover in urban landscapes, such 
as golf courses, home lawns, parks, sport fields, school playgrounds, and 
roadsides (Pincetl et al., 2019). Weed control is a constant issue in turf 
management, as weeds compete with turfgrass for resources, including 
sunlight, water, and nutrients, and reduce turf aesthetic and function
ality (Busey, 2003). Cultural techniques, such as irrigation and mowing, 
help reduce weed infestation, but the most effective way to control 
weeds is broadcast-spraying synthetic herbicides (McElroy and Martins, 
2013). However, herbicide application without a site-specific program 
often results in excessive herbicide usage. Many herbicides presently 
registered for weed control in turfgrass are considered problematic for 
the environment (USEPA, 2023a, 2023b). For instance, atrazine, a 

photosystem II-inhibiting herbicide currently used in warm-season 
turfgrass for preemergence and postemergence (POST) control of 
weeds, has been reported to be one of the most frequently detected 
pesticides in underground water in the United States (USEPA, 2023a). 

Machine vision-based automated precision herbicide application has 
the potential to reduce herbicide usage and lower weed control expen
ditures (Gerhards et al., 2022; Jin et al., 2023a; Monteiro and Santos, 
2022; Zhang et al., 2022). Previous researchers explored a variety of 
sensing methods for weed detection, such as multi-spectral imaging 
(Rosle et al., 2021; Wu et al., 2021), visible or near-infrared spectros
copy (Liang et al., 2018; Wu et al., 2008), and fluorescence (Su et al., 
2019). Current mainstream detection methods involve the use of deep 
learning convolutional neural networks (DCNNs) to extract features 
from weeds (Hasan et al., 2021; Wang et al., 2019; Zhang et al., 2022). 

* Corresponding author. Peking University Institute of Advanced Agricultural Sciences/Shandong Laboratory of Advanced Agricultural Sciences at Weifang, 
Weifang, Shandong, China. 
** Corresponding author. Peking University Institute of Advanced Agricultural Sciences/Shandong Laboratory of Advanced Agricultural Sciences at Weifang, 

Weifang, Shandong, China. 
E-mail addresses: xiaojun.jin@pku-iaas.edu.cn (X. Jin), jialin.yu@pku-iaas.edu.cn (J. Yu).   

1 The first and second authors contributed equally to this work. 

Contents lists available at ScienceDirect 

Crop Protection 

journal homepage: www.elsevier.com/locate/cropro 

https://doi.org/10.1016/j.cropro.2024.106626 
Received 8 December 2023; Received in revised form 3 February 2024; Accepted 7 February 2024   

mailto:xiaojun.jin@pku-iaas.edu.cn
mailto:jialin.yu@pku-iaas.edu.cn
www.sciencedirect.com/science/journal/02612194
https://www.elsevier.com/locate/cropro
https://doi.org/10.1016/j.cropro.2024.106626
https://doi.org/10.1016/j.cropro.2024.106626
https://doi.org/10.1016/j.cropro.2024.106626
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cropro.2024.106626&domain=pdf


Crop Protection 179 (2024) 106626

2

Given that a variety of weed species at varying densities, growth stages, 
mowing height, and surface conditions may present in a turfgrass site, 
training a neural network based on large-scale and high-quality image 
datasets is crucial for realizing effective weed detection (Olsen et al., 
2019). However, obtaining and annotating a large amount of training 
images is time-consuming and labor-intensive, and thus is fairly 
challenging. 

Recent improvements in Graphics Processing Unit (GPU) computing 
capability have greatly advanced neural network modeling technology 
based on deep learning (Alzubaidi et al., 2021). Numerous innovative 
concepts, such as alternative activation functions, regularization, 
parameter optimization, and architectural advances, have been inves
tigated to improve the performances of DCNNs (Sun et al., 2022). The 
primary concept of utilizing DCNNs for weed detection is to extract 
various features through convolutional operations. This approach aims 
to identify weeds based on the plant’s morphological characteristics, 
texture, and color of the leaves (Jin et al., 2021, 2022b; Le et al., 2020; 
Liu and Bruch, 2020; Sharpe et al., 2019; Zhuang et al., 2022). DCNNs 
have been successfully applied to detect weeds in real-time across 
various cropping systems, such as cool- and warm-season turfgrasses 
(Jin et al., 2022b; Yu et al., 2019a, 2019b), vegetables (Sharpe et al., 
2020a, 2020b), soybean (Glycine Max L. Merrill) (dos Santos Ferreira 
et al., 2017), wheat (Triticum aestivum L.) (Liu et al., 2023), and 
small-fruiting crops (Sharpe et al., 2019, 2020a). Previous studies have 
demonstrated the excellent performance of DCNNs in detecting multiple 
weed species, particularly in actively growing or dormant bermudagrass 
(Cynodon dactylon (L.) Pers.) (Yu et al., 2019b), actively growing 
perennial ryegrass (Lolium perenne L.) (Yu et al., 2019a), as well as 
drought-stressed or non-stressed bahiagrass (Paspalum notatum Flueggé) 
(Zhuang et al., 2022). 

Unfortunately, detecting weeds remains challenging in turf land
scapes due to various weed species with varying visual characteristics 
and lacking high-quality and large-scale labeled annotated image 
datasets. In previous research, Yu et al. (2019b) reported that VGGNet 
achieved high F1 scores (≥0.9278), with high recall values (≥0.9952) 
for detecting dandelion (Taraxacum officinale Web.), ground ivy (Gle
choma hederacea L.), and spotted spurge (Euphorbia maculata L.) in 
perennial ryegrass turfgrass; however, the authors manually annotated a 
total of 15,486 negative (images without the target weeds) and 17,600 
positive images (images contained the target weeds). In order to develop 
a neural network to detect broadleaf weed seedlings growing in wheat, 
Zhuang et al. (2022) utilized a large training dataset consisting of 11, 
000 negative (without weeds) and 11,000 positive images (with weeds) 
to train image classification neural networks. Collecting and labeling 
such large datasets requires considerable resources, time, and effort, 
thus significantly hindering the development of effective neural network 
models. 

An SSL strategy, leveraging both labeled and unlabeled data of weed 
images (Enguehard et al., 2019; Reddy et al., 2018), may be employed to 
address the issue of limited training datasets with labels. The method
ology of SSL combines supervised and unsupervised learning by 
leveraging a limited dataset of labeled data and a large amount of un
labeled data to train the neural networks and make predictions for 
previously unseen instances (Ding et al., 2017). The basic process in
volves using the existing labeled data to label the remaining unlabeled 
data, thereby augmenting the training data (Berthelot et al., 2019; Laine 
and Aila, 2016; Tarvainen and Valpola, 2017). Turfgrass sod undergoes 
periodic harvesting, leading to fluctuations in turfgrass coverage and the 
presence of bare soil area, which may affect the DCNNs for detecting 
weeds. Exploring the SSL approach for detecting weeds in bermudagrass 
sod farms may improve weed detection performance with a limited 
amount of manually annotated data, thus considerably improving the 
efficiency of developing effectual neural network models. 

Previous research documented that training image size affects the 
performance of DCNNs for weed detection. For example, Zhuang et al. 
(2022) reported that increasing training image sizes from 200 × 200 

pixels to 400 × 400 pixels decreased the performances of AlexNet 
(Krizhevsky et al., 2017) and VGGNet (Simonyan and Zisserman, 2014) 
but generally improved DenseNet (Iandola et al., 2014) and ResNet (He 
et al., 2016) for detecting weeds growing in wheat. However, the impact 
of training image sizes on the detection of weeds growing in turfgrass 
sod farms has not been documented. Therefore, the objectives of this 
research were (1) to comprehensively evaluate the effectiveness of SSL 
strategies when applied to the weed detection task using DCNNs across 
multiple datasets characterized by varying image sizes, (2) to undertake 
a comparative assessment between SSL and Fully Supervised Learning 
(FSL) methodologies with particular image sizes, and (3) to investigate 
the influence of varying turf coverage and bare soil area in sod farms on 
the performance of SSL for weed detection. 

2. Material and methods 

2.1. Image acquisition 

A total of 1900 training dataset images were captured from sod farms 
and city parks in JiangNiang District, Nanjing, Jiangsu, China (31◦37′- 
32◦07′N, 118◦28′-119◦06′W). These training images, featuring a low 
density of purple nutsedge and green kyllinga at pre-flowering growth 
stage. They were captured multiple times from April to May 2021. The 
testing dataset (TD) 1 images, featuring a low density of purple nutsedge 
at pre-flowering with visually estimated turf ground coverage exceeding 
>90% and bare soil ground coverage <10%, were captured from a sod 
farm in Suqian, Jiangsu, China (118◦3′N, 33◦96′W) in May 2019. The TD 
2 images, featuring a low density of purple nutsedge and green kyllinga 
at the pre-flowering stage with visually estimated turf ground coverage 
ranging from 30% to 40% and the bare soil coverage ranging from 60% 
to 70%, were captured in Jurong, Jiangsu, China (119◦77′N, 31◦95′W) in 
May 2021. The TD 3 images, featuring a low density of purple nutsedge 
at the pre-flowering stage with visually estimated turfgrass coverage 
ranging from 70% to 80% and bare soil coverage ranging from 20% to 
30%, were captured in Jurong, Jiangsu, China (119◦77′N, 31◦95′W) in 
May 2021. The TD 4 images were taken in July 2018 at the turfgrass 
research facility located at the University of Georgia Griffin Campus in 
Georgia, United States (33◦78′N, − 84◦40′W). These images showcase a 
low density of annual sedge at the pre-flowering stage, with a clump 
growth habit. The TD 5 images were taken at a golf course rough in 
Tampa, Florida, United States (27◦95′N, − 82◦46′W). These images 
consisted of a mixture of annual nutsedge, yellow nutsedge, and green 
kyllinga at the flowering or seedhead stage, growing alongside smooth 
crabgrass, doveweed, and/or various broadleaves such as dollar weeds, 
Florida pusley, and old-world diamond flower at high densities. The 
images also included newly cutted nutsedge leaf blades. 

The Training Dataset, TD 1, TD 2, and TD 3 images were taken using 
a Panasonic® DMC-ZS110 (Xiamen, Fujian, China) at a resolution of 
4300 × 2418 pixels. The TD 4 and TD 5 images were captured with a 
Sony® Cyber-Shot (SONY Corporation, Minato, Tokyo, Japan) at a res
olution of 1920 × 1080 pixels. All training and TD images were captured 
between 9:00 a.m. and 5:00 p.m. at local time with varying outdoor 
lighting conditions, including sunny, cloudy, and partially cloudy 
weather. Detailed information regarding the training and TD images are 
presented in Table 1. 

2.2. Establishing training, validation, and testing datasets 

In order to train and test the neural network, the captured images 
presented in Table 1 were cropped into sub-images of 240 × 240, 360 ×
360, or 480 × 480 pixels utilizing Irfanview (Version 5.5, Irfan Skijan, 
Jaice, Bosnia). For each image size, the cropped images were grouped 
into two classes: positive (with weeds) and negative images (without 
weeds). Using the cropped images of 360 × 360 pixels as an example, the 
cropped images displayed the training and testing images consisting of 
weeds growing in turfgrass sod farms with varying turfgrass coverage 
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and bare soil area, as illustrated in Fig. 1. 
For each image size, a total of 100 or 200 images per class were used 

for training the FSL and three SSL methods. As a result, the Resnet50 
network trained under 24 different conditions was trained, as shown in 
Tables 2 and 3. For each condition, 100 or 200 labeled images per class 
and 10,000 unlabeled images were used to train the neural network. To 
ensure a balanced number of positive and negative samples in the 
training dataset, approximately half of the unlabeled 10,000 images 
were positive, while the other half were negative. For each image size, 

each validation and TD was constituted by randomly selecting a total of 
500 positive and 500 negative images. 

2.3. Training sets and environment 

The training, validation, and testing were conducted on a worksta
tion fitted with an Intel® Core™ i9-10920× CPU and an NVIDIA RTX 
3080Ti GPU (12 GB GPU memory capacity). The operating system (OS) 
used was Ubuntu version 20.04.1. The training was performed using the 
Pytorch Deep Learning Framework based on Python 3.8 (version 1.8.1, 
Facebook in San Jose, CA, United States). The hyperparameters used for 
training were standardized to eliminate the influence that hyper
parameters have on the final model’s performances, as outlined below.  

o Optimizer: AdamW [betas:0.9,0.999; Weight decay:0.0005]  
o Base learning rate: 5e-5  
o Learning rate policy: StepLR  
o Batch size: 8  
o Training epochs: 100 

2.4. Experimental training strategy and neural network structure 

Three SSL strategies, including Meanteacher (Tarvainen and Valpola, 
2017), Pi-model (Laine and Aila, 2016), and FixMatch (Sohn et al., 
2020), were selected and compared with the FSL method. 

The Pi-Model was a simplified version of the Γ-Model used in Ladder 
Networks (Valpola, 2015). It eliminated the corrupted encoder and 
utilized the same neural network to generate predictions for corrupted 
and uncorrupted input data. This approach leveraged the inherent 
randomness of the prediction function fθ in neural networks, which was 
a consequence of regularization methods such as data augmentation and 
dropout. These techniques, as described by Kostopoulos et al. (2018), 
played a significant role in regularizing the model without significantly 
altering its predictions (Kostopoulos et al., 2018). However, the 
Pi-model had certain limitations. The model could only be updated once 
per epoch due to the extensive amount of data being used. This infre
quent update interval may not have allowed for optimal model learning. 
In addition, using the same model as both the teacher and the student 
could result in unsupervised loss of weight, outweighing the supervised 
loss of weight, as reported by Laine and Aila (2016). This imbalance 
could potentially hinder the effective learning of new information by the 
model. 

Meanteacher strategy was implemented in the present study in order 
to tackle the aforementioned issues. This strategy updated the weights of 
the student model using gradient backpropagation and separately 
updated the weights of the teacher model through exponential moving 
average (EMA). By employing this approach, the limitations of the Pi- 

Table 1 
Neural network training and testing dataset specifications.  

Dataset Location Image 
acquisition 
date 

Turfgrass Weed species 

Training 
Dataset 

Jiangning 
District, 
Nanjing, 
Jiangsu, China 

Apr to May 
2021 

Sod farm, 
city park 

Low density of 
purple nutsedge 
and green kyllinga 
at pre-flowering 
stage. 

TD1 Suqian, 
Jiangsu, China 

May 2019 Sod farm 
(>90% turf 
ground 
cover) 

Low density of 
purple nutsedge at 
pre-flowering 
stage. 

TD2 Jurong, 
Jiangsu, China 

May 2021 Sod farm 
(30%–40% 
turf ground 
cover) 

Low density of 
purple nutsedge 
and green kyllinga 
at pre-flowering 
stage. 

TD3 Jurong, 
Jiangsu, China 

May 2021 Sod farm 
(70–80% 
turf ground 
cover) 

Low density of 
purple nutsedge at 
pre-flowering 
stage. 

TD4 University of 
Georgia Griffin 
Campus, 
Georgia, 
United States 

July 2018 Turfgrass 
research 
facility 

Low density of 
annual sedge at 
pre-flowering 
stage with a clump 
growth habit. 

TD5 Tampa, 
Florida, United 
States 

Aug 2018 Golf course 
rough 

Annual nutsedge, 
yellow nutsedge, 
and green kyllinga 
at flowering or 
seedhead stage 
growing with 
smooth crabgrass, 
doveweed, and/or 
various 
broadleaves at 
high densities. 
Cutted nutsedge 
leaves also exist. 

Abbreviations: TD, testing dataset. 

Fig. 1. Example images used for training and testing image classification neural networks. Abbreviation: TD, testing dataset.  
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Model were overcome, resulting in more effective model updates and 
preventing the adverse effects of poor target quality on the learning 
process (Tarvainen and Valpola, 2017). 

FixMatch was initiated by generating pseudo-labels through the 
model’s predictions on weakly augmented unlabeled images. For a given 
image, the pseudo-label was retained only if the model exhibited a high- 
confidence prediction. Subsequently, the model was trained to predict 
these pseudo-labels when provided with a strongly augmented version 
of the same image (Sohn et al., 2020). 

The Resnet50 (He et al., 2016) was chosen as the training network 
for the experiment due to its availability of pre-training weights 

specially designed for the Imagenet dataset (Jia et al., 2009). Addi
tionally, Resnet50 was widely recognized as one of the outstanding basic 
networks for visual processing. 

2.5. Performance metrics 

The validation and testing results are arranged using a confusion 
matrix under four outcomes: true positive (tp), false positive (fp), true 
negative (tn), and false negative (fn). In the context of this study, tp 
represents the images where target weeds are correctly identified. tn 
represents the images where turfgrasses without target weeds are 

Table 2 
Weed detection validation results.  

Models Labeled images per class Image size (pixels) Validation dataset 

ACC Precision Recall F1 score 

Fullysupervised 100 240 × 240 0.9440 0.9458 0.9440 0.9439 
100 360 × 360 0.9160 0.9184 0.9160 0.9159 
100 480 × 480 0.9340 0.9380 0.9340 0.9338 
200 240 × 240 0.9650 0.9655 0.9650 0.9650 
200 360 × 360 0.9250 0.9288 0.9250 0.9248 
200 480 × 480 0.9530 0.9538 0.9530 0.9530 

Meanteacher 100 240 × 240 0.9200 0.9210 0.9200 0.9200 
100 360 × 360 0.8360 0.8420 0.8360 0.8353 
100 480 × 480 0.8470 0.8513 0.8470 0.8465 
200 240 × 240 0.9660 0.9661 0.9660 0.9660 
200 360 × 360 0.9180 0.9237 0.9180 0.9177 
200 480 × 480 0.9730 0.9734 0.9730 0.9730 

Pi-model 100 240 × 240 0.9670 0.9677 0.9670 0.9670 
100 360 × 360 0.9220 0.9228 0.9220 0.9220 
100 480 × 480 0.9540 0.9559 0.9540 0.9540 
200 240 × 240 0.9760 0.9766 0.9760 0.9760 
200 360 × 360 0.9490 0.9515 0.9490 0.9489 
200 480 × 480 0.9640 0.9645 0.9640 0.9640 

FixMatch 100 240 × 240 0.9770 0.9770 0.9770 0.9770 
100 360 × 360 0.9607 0.9600 0.9600 0.9607 
100 480 × 480 0.9665 0.9660 0.9660 0.9665 
200 240 × 240 0.9860 0.9861 0.9860 0.9860 
200 360 × 360 0.9670 0.9678 0.9670 0.9670 
200 480 × 480 0.9790 0.9790 0.9790 0.9790 

Abbreviation: ACC, accuracy. 

Table 3 
Weed detection testing results.  

Models Labeled images per class Image size (pixels) Testing dataset 

ACC Precision Recall F1 score 

Fullysupervised 100 240 × 240 0.940 0.998 0.882 0.936 
100 360 × 360 0.784 0.990 0.574 0.727 
100 480 × 480 0.697 1.000 0.394 0.565 
200 240 × 240 0.957 0.987 0.926 0.956 
200 360 × 360 0.814 0.979 0.642 0.775 
200 480 × 480 0.747 0.992 0.498 0.663 

Meanteacher 100 240 × 240 0.904 0.895 0.916 0.905 
100 360 × 360 0.823 0.997 0.648 0.785 
100 480 × 480 0.673 0.994 0.348 0.516 
200 240 × 240 0.959 0.9890 0.9280 0.9580 
200 360 × 360 0.846 0.884 0.796 0.838 
200 480 × 480 0.906 1.000 0.812 0.896 

Pi-model 100 240 × 240 0.966 0.996 0.936 0.965 
100 360 × 360 0.852 0.994 0.708 0.827 
100 480 × 480 0.850 0.989 0.708 0.825 
200 240 × 240 0.974 0.992 0.956 0.974 
200 360 × 360 0.936 0.984 0.886 0.933 
200 480 × 480 0.897 0.995 0.798 0.886 

FixMatch 100 240 × 240 0.981 0.996 0.966 0.981 
100 360 × 360 0.913 0.995 0.830 0.905 
100 480 × 480 0.924 0.993 0.854 0.918 
200 240 × 240 0.982 0.992 0.972 0.982 
200 360 × 360 0.940 0.998 0.800 0.888 
200 480 × 480 0.926 0.991 0.860 0.921 

Abbreviation: ACC, accuracy. 
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correctly identified. fp represents the images where images without 
target weeds are incorrectly identified as containing target weeds. fn 
represents the images where target weeds are incorrectly not identified 
as turfgrasses. Based on the confusion matrix results, accuracy (Equation 
(1)), precision (Equation (2)), recall (Equation (3)), and F1 score 
(Equation (4)) were calculated to evaluate the performance of weed 
detection. 

The precision, recall, and F1 score are metrics that measure the 
predictive ability of a neural network. These values range from 0 to 1 
and serve as unitless indices. A higher value indicates a better predictive 
ability of the network. High precision signifies that the neural network 
has a high success rate in detecting areas without weeds in the turfgrass. 
On the other hand, high recall indicates a high success rate in detecting 
the target weeds. 

Accuracy (ACC) is a measurement of how many predictions were 
correct out of the total number of observations. It was calculated using 
the following equation (Sokolova and Lapalme, 2009): 

ACC=
tp + tn

tp + fp + tn + fn
(1) 

When there is an imbalance between positive and negative samples 
in the dataset, ACC may not accurately reflect the performance of the 
model. In such cases, it is possible for the ACC to be high even if specific 
classes of samples were incorrectly classified. Therefore, it is recom
mended to consider other metrics, such as precision, recall, and F1 score, 
to assess the model’s performance. 

Precision measured the efficacy of the neural network in accurately 
identifying the targets and was computed using the following formula 
(Sokolova and Lapalme, 2009): 

Precision=
tp

tp + fp
(2) 

Recall offered an estimation of the ability of the trained neural 
network to correctly identify its targets. It was calculated using the 
following formula (Sokolova and Lapalme, 2009): 

Recall=
tp

tp + fn
(3) 

Furthermore, the F1 score of the neural network, the harmonic means 
of precision and recall, was calculated using the following formula 
(Sokolova and Lapalme, 2009): 

F1 =
2 × Precision × Recall

Precision + Recall
(4) 

The F1 score incorporates the aforementioned performance metrics 
of recall and precision, resulting in a more comprehensive and objective 
evaluation metric for assessing the performance of the neural networks. 

2.6. Result and discussion 

The experimental results presented in this study provide evidence for 
the viability of employing the SSL strategy to detect multiple sedge 
species at different densities and growth stages within turfgrass sod 
farms, even when confronted with a scarcity of labeled data. The ob
tained test results encompassed diverse turfgrass fields characterized by 
varying levels of turfgrass coverage and bare soil area and thus reflected 
the generalizability of the trained neural networks. 

According to the findings presented in Tables 3 and it was observed 
that the most favorable outcomes were achieved when employing the 
smallest training image size of 240 × 240 pixels, irrespective of the 
selected training strategy. The superior performance can be attributed to 
the chosen input image size of 240 × 240 pixels, which provides the 
network with an optimally sized field of view. This ensures that the field 
of view encompasses the target area while providing sufficient detailed 
information to the network. Conversely, as the image pixel size 
increased, the performance of the model decreased. Our hypothesis is 

that small-sized images often contain fewer details and information, 
making it easier for the model to focus on learning the basic features of 
the image. During the training process, the model can pay more atten
tion to learning and extracting key features of the image, such as edges, 
shapes, colors, etc., thereby improving the classification ability of the 
model. 

In the context of the Mean Teacher and Pi model training strategies, 
the majority of the metrics for the trained models showed improvements 
greater than 1% when trained with 200 labeled images as opposed to 
when trained with 100 labeled images. This observation indicates that 
increasing the number of labeled images used for training has a positive 
impact on the performance of weed detection. Conversely, when 
employing the FixMatch strategy, the observed model improvement was 
not pronounced, resulting in a minor gain of approximately 0.1% for 
both ACC and F1 score metrics. 

The Meanteacher-trained model utilizing 200 labeled images, which 
attained an ACC of 0.959 and an F1 score of 0.958, showed the capability 
of approximating the performance of the model trained through FSL. In 
addition, the same model trained under the same condition utilizing 100 
labeled images only attained an ACC of 0.904 and an F1 score of 0.905. 
This suggests that increasing the number of labeled images for the SSL 
strategy significantly contributes to bridging the performance gap be
tween the two training methods. The Pi-model-trained model exhibited 
superior performance in comparison to the FSL-trained model under 
identical conditions, irrespective of whether it was trained on 100 or 200 
labeled images. Moreover, the FixMatch method, surpassing even the Pi- 
model, demonstrated superior performance compared to the FSL, 
regardless of the number or pixel size of labeled images. This observa
tion highlights the efficacy and versatility of the FixMatch approach in 
detecting weeds in turfgrass, even when confronted with varying turf
grass coverage and areas of bare soil. 

In the study, among the trained neural networks, the testing results 
indicated that FSL and FixMatch, both trained with input images of 240 
× 240 pixels, exhibited the highest performance. Specifically, when 100 
labeled data were utilized, FSL demonstrated ACC, precision, recall, and 
F1 scores of 0.940, 0.998, 0.882, and 0.936, respectively. In addition, 
when trained with an input image size of 240 × 240 pixels, the Resnet50 
network model trained using the FixMatch method achieved ACC, pre
cision, recall, and F1 scores of 0.981, 0.996, 0.966, and 0.981, respec
tively. The optimal performance was attained using 200 labeled images 
when trained with FixMatch. Consequently, all subsequent comparisons 
were conducted between the FixMatch and the FSL strategy. 

Tables 4 and 5 showed the performance of the optimized model 
trained via FixMatch compared to the FSL strategy across TD 1 to 5. 
Irrespective of the quantity of labeled data or varying input image sizes, 
the FixMatch demonstrated superior performance in comparison to the 
FSL strategy. Furthermore, the models trained using the FixMatch 
method effectively detected sedges across the TD 1 to 5. Especially when 
using the smallest image input size of 240 × 240 pixels, the FixMatch- 
trained model achieved high F1 scores all above 0.838. In contrast, the 
FSL strategy yielded F1 scores approximately equal to or greater than 
0.864 across the TD 1, TD 2, and TD 5 only when trained with the 
smallest size images. Notably, the FixMatch-trained model, with only 
100 or 200 annotated images, consistently outperformed the FSL-trained 
model across all conditions. These results suggest that the FixMatch 
models had superior performance and required fewer labeled samples 
compared to the FSL strategy. 

To assess the impact of varying turf coverage within a sod farm on 
the model’s efficacy for detecting weeds, the study was designed to 
investigate the performance of weed detection across TD 1, TD 2, and TD 
3. These datasets featured different proportions of turfgrass coverage 
and bare soil areas. Specifically, TD 1, TD 2, and TD 3 exhibited turfgrass 
coverage >90%, 30%–40%, and 70%–80%, respectively (refer to 
Table 1 for details). Both FSL and FixMatch methods showed the worst 
results when tested with TD 3 (Tables 4 and 5). After a comprehensive 
comparison, the FixMatch method using 200 labeled images with pixels 
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of 480 × 480 as the training data showed the worst results when tested 
with the TD3, with an F1 score of only 0.354. Additionally, the FSL 
strategy exhibited relatively worse performance on the TD 3 and TD 4 
datasets with 200 labeled images at the pixel size of 480 × 480. The 
primary contributor to the observed decline in the F1 scores with the TD 
3 and TD 4 datasets for both strategies was identified as a significant 
reduction in recall. 

In the context of the five validation datasets, the model exhibited a 

reduced F1 score as the image size enlarged, predominantly attributable 
to low recall rather than precision, indicating that a large proportion of 
the actual weeds present in the trained neural network were not being 
detected. Such an outcome is highly undesirable, as it has the potential 
to result in missed spraying instances, thereby compromising the effi
cacy of weed control when utilizing the model in smart sprayers for 
precision herbicide application. 

In a recent investigation conducted by Jin et al. (2022a), a software 

Table 4 
Neural network (trained with 100 labeled images) testing results for detecting 
sedges growing in bermudagrass.  

Dataset Models Image 
size 
(pixels) 

ACC Percision Recall F1 

score 

TD 1 Fullysupervised 240 ×
240 

0.898 0.984 0.812 0.890 

Fullysupervised 360 ×
360 

0.773 1.000 0.557 0.716 

Fullysupervised 480 ×
480 

0.681 1.000 0.397 0.569 

FixMatch 240 ×
240 

0.942 0.985 0.899 0.940 

FixMatch 360 ×
360 

0.948 0.979 0.919 0.948 

FixMatch 480 ×
480 

0.902 1.000 0.814 0.888 

TD 2 Fullysupervised 240 ×
240 

0.912 0.954 0.862 0.906 

Fullysupervised 360 ×
360 

0.794 0.980 0.632 0.769 

Fullysupervised 480 ×
480 

0.586 1.000 0.169 0.289 

FixMatch 240 ×
240 

0.973 0.979 0.966 0.972 

FixMatch 360 ×
360 

0.969 0.870 0.955 0.970 

FixMatch 480 ×
480 

0.923 0.946 0.897 0.921 

TD 3 Fullysupervised 240 ×
240 

0.745 1.000 0.462 0.632 

Fullysupervised 360 ×
360 

0.558 1.000 0.155 0.269 

Fullysupervised 480 ×
480 

0.474 0.400 0.043 0.078 

FixMatch 240 ×
240 

0.932 1.000 0.856 0.922 

FixMatch 360 ×
360 

0.823 1.000 0.662 0.797 

FixMatch 480 ×
480 

0.759 0.863 0.633 0.730 

TD 4 Fullysupervised 240 ×
240 

0.813 1.000 0.634 0.776 

Fullysupervised 360 ×
360 

0.640 0.956 0.314 0.473 

Fullysupervised 480 ×
480 

0.538 1.000 0.120 0.215 

FixMatch 240 ×
240 

0.855 0.981 0.731 0.838 

FixMatch 360 ×
360 

0.614 0.947 0.263 0.411 

FixMatch 480 ×
480 

0.696 1.000 0.421 0.593 

TD 5 Fullysupervised 240 ×
240 

0.934 1.000 0.870 0.930 

Fullysupervised 360 ×
360 

0.892 1.000 0.761 0.864 

Fullysupervised 480 ×
480 

0.500 1.000 0.049 0.094 

FixMatch 240 ×
240 

0.973 1.000 0.945 0.972 

FixMatch 360 ×
360 

0.792 1.000 0.538 0.700 

FixMatch 480 ×
480 

0.640 1.000 0.238 0.384 

Abbreviation: ACC, accuracy; TD, testing dataset. 

Table 5 
Neural network (trained with 200 labeled images) testing results for detection of 
sedges growing in bermudagrass.  

Dataset Models Image 
size 
(pixels) 

ACC Precision Recall F1 

score 

TD 1 Fullysupervised 240 ×
240 

0.939 0.971 0.906 0.938 

Fullysupervised 360 ×
360 

0.863 0.982 0.745 0.847 

Fullysupervised 480 ×
480 

0.624 1.000 0.288 0.448 

FixMatch 240 ×
240 

0.956 0.972 0.940 0.956 

FixMatch 360 ×
360 

0.873 0.983 0.765 0.860 

FixMatch 480 ×
480 

0.783 1.000 0.590 0.742 

TD 2 Fullysupervised 240 ×
240 

0.942 0.957 0.924 0.940 

Fullysupervised 360 ×
360 

0.825 0.965 0.703 0.813 

Fullysupervised 480 ×
480 

0.663 1.000 0.324 0.489 

FixMatch 240 ×
240 

0.969 0.986 0.952 0.968 

FixMatch 360 ×
360 

0.962 1.000 0.929 0.963 

FixMatch 480 ×
480 

0.864 0.981 0.743 0.845 

TD 3 Fullysupervised 240 ×
240 

0.867 1.000 0.720 0.837 

Fullysupervised 360 ×
360 

0.590 0.971 0.223 0.363 

Fullysupervised 480 ×
480 

0.500 0.583 0.101 0.172 

FixMatch 240 ×
240 

0.949 1.000 0.894 0.944 

FixMatch 360 ×
360 

0.686 1.000 0.399 0.570 

FixMatch 480 ×
480 

0.567 0.762 0.230 0.354 

TD 4 Fullysupervised 240 ×
240 

0.791 1.000 0.593 0.745 

Fullysupervised 360 ×
360 

0.569 0.958 0.168 0.286 

Fullysupervised 480 ×
480 

0.561 1.000 0.165 0.284 

FixMatch 240 ×
240 

0.869 0.982 0.759 0.856 

FixMatch 360 ×
360 

0.727 1.000 0.467 0.637 

FixMatch 480 ×
480 

0.628 0.976 0.301 0.460 

TD 5 Fullysupervised 240 ×
240 

0.969 1.000 0.938 0.968 

Fullysupervised 360 ×
360 

0.764 1.000 0.479 0.647 

Fullysupervised 480 ×
480 

0.581 1.000 0.115 0.206 

FixMatch 240 ×
240 

0.924 1.000 0.849 0.919 

FixMatch 360 ×
360 

0.799 1.000 0.556 0.714 

FixMatch 480 ×
480 

0.659 1.000 0.279 0.436 

Abbreviation: ACC, accuracy; TD, testing dataset. 
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application was devised, integrating an image classification neural 
network model with OpenCV-Python. This innovative software auto
matedly partitioned a testing image measuring 1920 × 1080 pixels into 
40 grid cells of equal dimensions, employing OpenCV. Subsequently, the 
image classification neural network was deployed to categorize the 
contents of these grid cells. Upon detection of weeds by the developed 
neural network within a grid cell, the corresponding area was desig
nated as “sprayed,” whereas grid cells without weeds were classified as 
“non-sprayed.” 

A recently developed smart sprayer prototype demonstrated its 
effectiveness in detecting weeds growing on dormant bermudagrass turf 
(Jin et al., 2023a). After the grid cells were located in the machine vision 
subsystem of the smart sprayer using the software described above, the 
nozzles above the weed-containing grid cells were activated to precisely 
spray the herbicide. Recently, a smart sprayer prototype, developed and 
reported by Jin et al. (2023b), demonstrated successful capabilities for 
detecting weeds growing in bermudagrass turf. The authors noted that 
following the detection of grid cells containing weeds within the ma
chine vision subsystem of the developed smart sprayer, facilitated by the 
aforementioned software, the nozzles positioned above grid cells con
taining weeds were activated, thereby realizing precision herbicide 
application. Integrating the developed smart sprayer reported by Jin 
et al. (2023b) with the SSL-trained neural networks proposed in this 
paper, for precise herbicide application in turf sod farms, merits further 
investigation. 

3. Conclusion 

This research validated the effectiveness of the SSL strategy for weed 
detection with a small amount of labeled data. Experimental results 
revealed that the SSL strategy employed in FixMatch outperformed FSL. 
The optimal performance of the trained model was achieved when uti
lizing input images at a resolution of 240 × 240 pixels. The experiment 
revealed that the advantage derived from employing 200 labeled sam
ples was not notably superior to that observed with 100 labeled samples 
when utilizing the FixMatch. Consequently, the conclusion was that the 
ResNet50 model, trained under the SSL strategy of FixMatch using 200 
labeled images at a resolution of 240 × 240 pixels, yielded the best 
performance. In addition, varying turf coverage and bare soil area in 
bermudagrass sod farms barely had any meaningful impact on the per
formance of SSL for weed detection. The incorporation of SSL notably 
improved the ability of the neural networks to detect weeds. Never
theless, its performance proved insufficient when tested on the TD 3 and 
TD 4 datasets. Therefore, collecting diverse weed images from various 
geographical locations and under varied environmental conditions is 
crucial because a higher quality and more balanced dataset enhances the 
model’s generalizability and strengthens the training process. 
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